A GCV based Arnoldi-Tikhonov regularization method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arnoldi-Tikhonov regularization methods

Tikhonov regularization for large-scale linear ill-posed problems is commonly implemented by determining a partial Lanczos bidiagonalization of the matrix of the given system of equations. This paper explores the possibility of instead computing a partial Arnoldi decomposition of the given matrix. Computed examples illustrate that this approach may require fewer matrix-vector product evaluation...

متن کامل

Tikhonov regularization via flexible Arnoldi reduction

Flexible GMRES, introduced by Saad, is a generalization of the standard GMRES method for the solution of large linear systems of equations. It is based on the flexible Arnoldi process for reducing a large square matrix to a small matrix. We describe how the flexible Arnoldi process can be applied to implement one-parameter and multi-parameter Tikhonov regularization of linear discrete ill-posed...

متن کامل

GCV for Tikhonov regularization via global Golub-Kahan decomposition

Generalized Cross Validation (GCV) is a popular approach to determining the regularization parameter in Tikhonov regularization. The regularization parameter is chosen by minimizing an expression, which is easy to evaluate for small-scale problems, but prohibitively expensive to compute for large-scale ones. This paper describes a novel method, based on Gauss-type quadrature, for determining up...

متن کامل

Generalized Arnoldi-Tikhonov Method for Sparse Reconstruction

This paper introduces two new algorithms, belonging to the class of Arnoldi-Tikhonov regularization methods, which are particularly appropriate for sparse reconstruction. The main idea is to consider suitable adaptively-defined regularization matrices that allow the usual 2-norm regularization term to approximate a more general regularization term expressed in the p-norm, p ≥ 1. The regularizat...

متن کامل

A Parameter Choice Method for Tikhonov Regularization

Abstract. A new parameter choice method for Tikhonov regularization of discrete ill-posed problems is presented. Some of the regularized solutions of a discrete ill-posed problem are less sensitive than others to the perturbations in the right-hand side vector. This method chooses one of the insensitive regularized solutions using a certain criterion. Numerical experiments show that the new met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BIT Numerical Mathematics

سال: 2013

ISSN: 0006-3835,1572-9125

DOI: 10.1007/s10543-013-0447-z